Tema 3. Números racionales I

De CNB
Ir a la navegación Ir a la búsqueda
Busca en cnbGuatemala con Google

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Aprendo y Enseño Conjunto, Sistemas Númericos y Operaciones icono1.jpg

Inicio[editar | editar código]

Aprendo y Enseño Conjunto, Sistemas Númericos y Operaciones icono4.jpg

Indicadores de logro

  1. Determina las fracciones equivalentes de una fracción irreducible.
  2. Expresa fracciones impropias y fracciones mixtas.
  3. Suma y resta fracciones con denominadores comunes y denominadores diferentes.

Todas las actividades de este tema son para que usted realice. Si tiene oportunidad reúnase con otros docentes y compartan. Se recomienda aplicarlas con sus estudiantes del Ciclo Básico.

1. Lea y resuelva.

La biblioteca municipal cuenta con 2,950 libros. En una librera están colocados los de historia y poesía que conforman la mitad de libros en existencia. En otra librera se encuentra el resto de los libros distribuidos de la manera siguiente: de ciencias básicas ocupan un cuarto del espacio; de matemática, la mitad de la librera; y las revistas, ocupan el otro cuarto de la librera.

¿Cuántos libros de ciencias básicas y Matemáticas hay en la biblioteca?

  • Plantee una estrategia para hallar la cantidad de libros.
  • Comparta con los compañeros sus hallazgos.
  • Compare sus resultados con otros compañeros.

2. Lea, resuelva y exponga resultados.

Enrique le dice a su amiga Julia que él vive a una distancia aproximada de 13/15 kilómetros a la derecha de Gilberto. Por su parte, Julia le indica a Enrique que ella considera que vive a 7/8 a la izquierda de Gilberto.

  • Ubique la información en una recta numérica y establezca quién vive más cerca de Gilberto.
  • Proponga otras estrategias que se pueden utilizar para determinar quién vive más cerca.
    Fernando, Diana y Elsa tienen que pintar un cuadro para la clase de dibujo. Fernando emplea la mitad del día en hacerlo; Diana, las dos terceras partes del día; y Elsa, una tercera parte.
  • ¿Quién ha tardado más tiempo en hacer el cuadro? ¿Quién menos?
  • Comparta la estrategia que usó para resolver el problema.
  • Explique como encontró la respuesta.
  • Converse con un compañero acerca de las formas en que aprende sobre estos procesos.

Desarrollo[editar | editar código]

Aprendo y Enseño Conjunto, Sistemas Númericos y Operaciones icono4.jpg

Nuevos aprendizajes[editar | editar código]

El símbolo [math]\displaystyle{ \frac {a}{b} }[/math] , donde a y b son números cardinales y b ≠ 0, se llama fracción. El número que esta sobre la barra es el numerador; el número que está debajo es el denominador. Una fracción puede describir una región o un conjunto. Las fracciones que representan la misma cantidad se llaman fracciones equivalentes. Si se multiplica o se divide el numerador y denominador por una cantidad diferente de cero obtengo una fracción equivalente.

Fracciones equivalentes
Aprendo y Enseño Conjunto, Sistemas Númericos y Operaciones 1 pag(14.1).jpg

1. Copie en el cuaderno las operaciones indicadas, para hallar fracciones equivalentes.

Ej. [math]\displaystyle{ \frac{7}{5} }[/math]*[math]\displaystyle{ \frac{6}{6} }[/math] = [math]\displaystyle{ \frac{42}{30} }[/math]

[math]\displaystyle{ \frac{10}{16} }[/math]*[math]\displaystyle{ \frac{3}{3} }[/math] = [math]\displaystyle{ \frac{\Box}{\Box} }[/math]

[math]\displaystyle{ \frac{8}{20} }[/math][math]\displaystyle{ \div \frac{2}{2} }[/math] = [math]\displaystyle{ \frac{\Box}{\Box} }[/math]

[math]\displaystyle{ \frac{4}{4} }[/math]*[math]\displaystyle{ \frac{5}{5} }[/math] = [math]\displaystyle{ \frac{\Box}{\Box} }[/math]

[math]\displaystyle{ \frac{25}{75} }[/math][math]\displaystyle{ \div \frac{25}{25} }[/math] = [math]\displaystyle{ \frac{\Box}{\Box} }[/math]

Fracciones propias e impropias[editar | editar código]

Una fracción propia es cuando el numerador es menor que el denominador. Si su numerador es mayor o igual que su denominador, entonces es una fracción impropia. Cuando una fracción impropia se escribe en forma de un entero y una fracción, se llama numeral mixto o número mixto.

2. Represente en el cuaderno de forma geométrica los números:

  • Trace una recta numérica y localice los números anteriores.
  • Establezca quién es el mayor y el menor, según su posición en la recta numérica.
  • Compare las representaciones con sus compañeros.

[math]\displaystyle{ 2\frac{2}{5} }[/math]; [math]\displaystyle{ \frac{4}{5} }[/math]; [math]\displaystyle{ 1\frac{3}{4} }[/math] y [math]\displaystyle{ \frac{5}{2} }[/math]

Fracciones de igual denominador[editar | editar código]

Para sumar (adicionar) o restar (sustraer) fracciones de igual denominador se copia el denominador y se suman o restan los numeradores. Si son de diferente denominador, se convierten en fracciones equivalentes para expresarlas con igual denominador.

  • Represente geométricamente las operaciones:

[math]\displaystyle{ \frac {5}{7}+\frac {3}{7}-\frac {6}{7}=\frac {2}{7} }[/math]

  • Represente de forma geométrica la suma:

[math]\displaystyle{ 3\frac{1}{2}+\frac {3}{2}=\frac {10}{2} }[/math]

Cierre[editar | editar código]

Ejercicios del tema[editar | editar código]

Aprendo y Enseño Conjunto, Sistemas Númericos y Operaciones icono2.jpg

Nivel: Conocimiento y recuerdo. Identifica y examina las situaciones[editar | editar código]

1. Conteste (V) verdadero o (F) falso a las siguientes afirmaciones y corrija en el cuaderno aquellas que sean falsas:

a)[math]\displaystyle{ \frac{29}{6} \frac{9}{6} }[/math]son equivalentes ( )
b)La fracción [math]\displaystyle{ \frac{2}{3} }[/math] es la fracción irreducible de [math]\displaystyle{ \frac{4}{12} }[/math] ( )
c) Es lo mismo comer [math]\displaystyle{ \frac{4}{5} }[/math]de pastel que [math]\displaystyle{ \frac{20}{25} }[/math] ( )

2. Seleccione entre las opciones la respuesta correcta.

Operación (a) (b) (c)
[math]\displaystyle{ \frac{3}{5}-\frac{6}{5}+\frac{4}{5}+\frac{3}{5} }[/math]=? [math]\displaystyle{ \frac{4}{10} }[/math] [math]\displaystyle{ \frac{10}{5} }[/math] [math]\displaystyle{ \frac{4}{5} }[/math]
[math]\displaystyle{ \frac{x}{3}-\frac{2x}{3}+\frac{5x}{3} }[/math]=? [math]\displaystyle{ \frac{4x}{3} }[/math] [math]\displaystyle{ \frac{6x}{3} }[/math] [math]\displaystyle{ \frac{2x}{6} }[/math]
[math]\displaystyle{ \frac{2}{3}+\frac{1}{6}+\frac{7}{12} }[/math]=? [math]\displaystyle{ \frac{10}{21} }[/math] [math]\displaystyle{ \frac{15}{12} }[/math] [math]\displaystyle{ \frac{10}{3} }[/math]
[math]\displaystyle{ \frac{15}{y}-\frac{10}{y}-\frac{17}{6} }[/math]=? [math]\displaystyle{ \frac{8}{3y} }[/math] [math]\displaystyle{ \frac{8}{y} }[/math] [math]\displaystyle{ \frac{8}{y^3} }[/math]
3) De los números al álgebra
Evalúe cada expresión y escriba en forma de número mixto. Observe el ejemplo.
[math]\displaystyle{ 0) }[/math] [math]\displaystyle{ \frac {a}{b} }[/math] para [math]\displaystyle{ a = 23; b =5 }[/math] [math]\displaystyle{ \frac {23}{5}= }[/math] [math]\displaystyle{ 4\frac {3}{4} }[/math]
[math]\displaystyle{ 1) }[/math] [math]\displaystyle{ \frac {m}{n} }[/math] para [math]\displaystyle{ m = 73; =17 }[/math]
[math]\displaystyle{ 2) }[/math] [math]\displaystyle{ \frac {2w}{z} }[/math] para [math]\displaystyle{ w = 33; z =5 }[/math]
[math]\displaystyle{ 3) }[/math] [math]\displaystyle{ \frac {u}{2v} }[/math] para [math]\displaystyle{ u = 27; v =11 }[/math]

Nivel: Comprensión. Lea y resuelva las siguientes situaciones[editar | editar código]

3. Exponga con un cartel.

Se organizó un maratón de 5 km. ¿Cuál es el orden en que podemos ubicar carteles a lo largo del camino que indiquen recorridos de: [math]\displaystyle{ \frac {1}{2} }[/math] km; [math]\displaystyle{ \frac {17}{5} }[/math] km; [math]\displaystyle{ \frac {13}{3} }[/math] km?

4. Trace una recta numérica y ubique las marcas, comparta los resultados.

Los albañiles han pintado [math]\displaystyle{ \frac {5}{8} }[/math] de una pared de color azul, [math]\displaystyle{ \frac {1}{4} }[/math] de gris y el resto no está pintada todavía.

  • ¿Qué porción de la pared está pintada? ¿Qué parte no está pintada?
  • Calcule y comparta la estrategia que usó.

5. Si un lado de una ventana de forma cuadrada es de [math]\displaystyle{ \frac {6b}{8} }[/math]

  • Dibuje el cuadrado e identifique sus lados, luego sumando sus lados para saber su perímetro.
  • Calcule el perímetro de la ventana si el lado es: b=2 4/12

Nivel: Análisis. Ordena los datos y plantea estrategias[editar | editar código]

6. Observe y copie en el cuaderno el ejemplo y solucione los ejercicios que se muestran en la Tabla 1.

Estuardo se fue de viaje y durante la primera hora realizó [math]\displaystyle{ \frac {1}{3} }[/math] de camino y en la hora siguiente recorrió [math]\displaystyle{ \frac {2}{5} }[/math] del camino.

  • ¿Qué parte del camino recorrió Estuardo en esas horas?
  • ¿Qué parte del viaje falta?
  • Trace una recta numérica para ubicar los recorridos
  • Comparta sus resultados y explique.

De una bolsa de caramelos, Oscar sacó [math]\displaystyle{ \frac {1}{4} }[/math] y María [math]\displaystyle{ \frac {1}{3} }[/math]

  • ¿Qué parte de los caramelos quedó en la bolsa?
  • Represente geométricamente la situación.
  • Comparta sus resultados.
Figura 1
De los números al álgebra
Números Álgebra
[math]\displaystyle{ \frac{6}{15}=\frac{2*\not{3}}{5*\not{3}}=\frac{2}{5} }[/math] [math]\displaystyle{ \frac{3am}{5bm}=\frac{3*a*\not{m}}{5*b*\not{m}}=\frac{3a}{5b} }[/math]
[math]\displaystyle{ \frac{15}{21}\frac{\Box*\Box}{\Box*\Box}=\frac{\Box}{\Box} }[/math] [math]\displaystyle{ \frac{3x}{15xy}\frac{\Box*\Box}{\Box*\Box*\Box}=\frac{\Box}{\Box} }[/math]
[math]\displaystyle{ \frac{35}{70} }[/math] [math]\displaystyle{ \frac{20wy}{45w} }[/math]

Nivel: Utilización. Utiliza la información para resolver los planteamientos[editar | editar código]

7. Resuelva en el cuaderno las siguientes situaciones expresadas como:[math]\displaystyle{ \frac{t}{5}+\frac{t}{5}=10 }[/math] y [math]\displaystyle{ \frac{t}{5}+\frac{t}{5}+10 }[/math]

  • Escriba las diferencias entre ambas situaciones.
  • Explique a sus compañeros cómo solucionó cada caso.
  • Compare sus estrategias y soluciones.

x es la cantidad de combustible que le queda en el tanque a una camioneta para terminar su recorrido, la expresión [math]\displaystyle{ 1+\frac{3}{x}=9 }[/math] representa la cantidad de combustibles.

  • Plantee una estrategia para hallar el valor de x.
  • Determine qué fracción de combustible queda y comparta su hallazgo.

8. Establezca una estrategia para resolver el problema y preséntelo en forma gráfica.

  • ¡Cómo! ¿Ya no hay leche? –preguntó la madre. –Si ayer compré suficiente para el desayuno.
  • La mitad la usó la abuela para el arroz con leche –dijo Alberto.
  • Bueno, yo usé la mitad de la que quedó para los licuados esta mañana – dijo Martha.
  • Acuérdate que al medio día ocupaste la mitad de la que había para el café –dijo Javier.
  • Yo me tomé la mitad de la que quedaba, mientras veía la televisión –agregó Juanito.
  • ¿Y solo queda ¼ de litro? –Preguntó el padre–, pero, ¿cuánto compraste ayer?

Resultados a los ejercicios del tema[editar | editar código]

Compruebe sus resultados a los ejercicios del tema con esta tabla.

Respuestas de la fase de inicio[editar | editar código]

1. Explique que al sumar se obtiene:[math]\displaystyle{ \frac{1}{4}+\frac{1}{2}=\frac{3}{4} }[/math] Al multiplicar[math]\displaystyle{ \frac{3}{4} }[/math]*1475[math]\displaystyle{ \cong }[/math]1106 libros

2. Dibuje una recta numérica para ubicar las fracciones luego plantee e identifique Julia: 7/-8=105/120;

Enrique 13/15=104/120, Enrique está más cerca.

Amplifique a denominador 6 para comparar distancias:

Fernando [math]\displaystyle{ \frac{1}{2}\to\frac{3}{6} }[/math]

Diana [math]\displaystyle{ \frac{2}{3}\to\frac{4}{6} }[/math]

Elsa [math]\displaystyle{ \frac{1}{3}\to\frac{2}{5} }[/math]

Más=Diana; Menos=Elsa

Respuestas de la fase de cierre[editar | editar código]

Ejercicios del tema

Conocimiento y recuerdo: Identifica y examina las situaciones

En esta parte se refuerza la habilidad de poder recordar determinada palabra o concepto, operación y luego emplearlo.

1. a) [math]\displaystyle{ 26/24=13/12≠9/6 }[/math], no son equivalentes, b) [math]\displaystyle{ 2/3; 4/12=1/3≠2/3 }[/math] no son equivalente c) [math]\displaystyle{ 4/5; 20/25=4/5 }[/math] son equivalentes.

2. 1) [math]\displaystyle{ 4/10; }[/math] 2) [math]\displaystyle{ 4x/3; }[/math] 3) [math]\displaystyle{ 17/12; }[/math] 4) [math]\displaystyle{ 8/y }[/math]

3. 1)[math]\displaystyle{ 4\frac {5}{17} }[/math] 2) [math]\displaystyle{ 6\frac {3}{5} }[/math]; [math]\displaystyle{ 2\frac{5}{11} }[/math]

Comprensión: Organiza y relaciona la información

Refuerza lo que lee y, asocia un número, una variable y una operación. La selección de elementos significativos le permite dar respuesta a la situación problemática

Respuestas:

4. Trace una recta numérica y ubique:

[math]\displaystyle{ \frac {1}{2}; 3\frac {2}{5}; 4\frac {1}{3} }[/math]

Calcule la parte pintada: [math]\displaystyle{ 5/8+1/4=7/8 }[/math]; parte no pintada: [math]\displaystyle{ 1-7/8=1/9 }[/math]

Sume los lados para hallar el perímetro:

[math]\displaystyle{ \frac{6b}{8}+\frac{6b}{8}\frac{6b}{8}+\frac{6b}{8}=\frac{24b}{8}=3b }[/math]

5. Sustituya para el perímetro = [math]\displaystyle{ 3\frac{28}{12}=7 }[/math]

Respuestas de la fase de análisis[editar | editar código]

Ordena los datos y plantea estrategias

Identifique diferencias y similitudes importantes en el conocimiento.

6. Factorice y simplifique: [math]\displaystyle{ \frac {15}{21}=\frac{\not{3}*{5}} {\not{3}*{7}}=\frac{5}{7}; \frac{3x}{15xy}=\frac{\not{3}*x}{\not{3}*5*x*y}=\frac{1}{5} }[/math]

[math]\displaystyle{ \frac {35}{70}=\frac {\not{7}*\not{5}}{\not{7}*\not{5}*2}=\frac{1}{2}; \frac{20wy}{45w}=\frac {4*\not{5}*\not{w}y}{9*\not{5}*\not{w}}=\frac {4y}{9} }[/math]

Calcule [math]\displaystyle{ \frac {2}{5}+\frac{1}{3}=\frac{11}{15}; }[/math] falta por recorrer [math]\displaystyle{ 1-\frac {11}{15}=\frac{4}{15}; }[/math]

Calcule [math]\displaystyle{ \frac {1}{4}+\frac{1}{3}=\frac{7}{12}; }[/math]

caramelos que quedan en la bolsa [math]\displaystyle{ 1-\frac {7}{12}=\frac{5}{12}; }[/math]

Utilización. Plantea una estrategia utilizando la información para resolver los problemas

Llegar a soluciones efectivas en este nivel indica que se ha logrado un estímulo que le permite actuar con dominio del conocimiento.

7. Despeje: [math]\displaystyle{ t:\frac {2t}{5}\to 2t=50 \to t=\frac {50}{2}=25 }[/math]

la variable tiene un valor determinado.

Sume las fracciones:

[math]\displaystyle{ \frac {t+t+50}{5}\to 2t=50 \to \frac {2t}{5}+10; }[/math] el resultado es una expresión llamada binomio.

8.Despeje

[math]\displaystyle{ x\frac {3}{x}=9+1 \to \frac {3}{x}=8 \to \frac {3}{8}=x; }[/math]

Calcule lo bebido: [math]\displaystyle{ \frac {1}{2}+\frac{1}{4}\frac{1}{8}\frac{1}{16}=\frac{15}{16} }[/math]

Por lo tanto, lo que sobra es [math]\displaystyle{ \frac {1}{16} }[/math] de lo que se compró y esto equivale a un 1/4 de litro por los tanto [math]\displaystyle{ \frac {1}{4}\div\frac {1}{16}=4 }[/math] litros se compraron.

Capacidad o destreza para hacer algo bien o con facilidad.

Lo que estimula o incita a hacer algo.